openocd/src/target/cortex_a8.c

1691 lines
46 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009 by Dirk Behme *
* dirk.behme@gmail.com - copy from cortex_m3 *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* Cortex-A8(tm) TRM, ARM DDI 0344H *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "cortex_a8.h"
#include "register.h"
#include "target_request.h"
#include "target_type.h"
static int cortex_a8_poll(struct target *target);
static int cortex_a8_debug_entry(struct target *target);
static int cortex_a8_restore_context(struct target *target);
static int cortex_a8_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int cortex_a8_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int cortex_a8_dap_read_coreregister_u32(struct target *target,
uint32_t *value, int regnum);
static int cortex_a8_dap_write_coreregister_u32(struct target *target,
uint32_t value, int regnum);
/*
* FIXME do topology discovery using the ROM; don't
* assume this is an OMAP3.
*/
#define swjdp_memoryap 0
#define swjdp_debugap 1
#define OMAP3530_DEBUG_BASE 0x54011000
/*
* Cortex-A8 Basic debug access, very low level assumes state is saved
*/
static int cortex_a8_init_debug_access(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
int retval;
uint32_t dummy;
LOG_DEBUG(" ");
/* Unlocking the debug registers for modification */
/* The debugport might be uninitialised so try twice */
retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
if (retval != ERROR_OK)
mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
/* Clear Sticky Power Down status Bit in PRSR to enable access to
the registers in the Core Power Domain */
retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
/* Enabling of instruction execution in debug mode is done in debug_entry code */
/* Resync breakpoint registers */
/* Since this is likley called from init or reset, update targtet state information*/
cortex_a8_poll(target);
return retval;
}
/* To reduce needless round-trips, pass in a pointer to the current
* DSCR value. Initialize it to zero if you just need to know the
* value on return from this function; or (1 << DSCR_INSTR_COMP) if
* you happen to know that no instruction is pending.
*/
static int cortex_a8_exec_opcode(struct target *target,
uint32_t opcode, uint32_t *dscr_p)
{
uint32_t dscr;
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
dscr = dscr_p ? *dscr_p : 0;
LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
/* Wait for InstrCompl bit to be set */
while ((dscr & (1 << DSCR_INSTR_COMP)) == 0)
{
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
{
LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
return retval;
}
}
mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
do
{
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
{
LOG_ERROR("Could not read DSCR register");
return retval;
}
}
while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
if (dscr_p)
*dscr_p = dscr;
return retval;
}
/**************************************************************************
Read core register with very few exec_opcode, fast but needs work_area.
This can cause problems with MMU active.
**************************************************************************/
static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
uint32_t * regfile)
{
int retval = ERROR_OK;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
cortex_a8_dap_write_coreregister_u32(target, address, 0);
cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
dap_ap_select(swjdp, swjdp_memoryap);
mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
dap_ap_select(swjdp, swjdp_debugap);
return retval;
}
static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
{
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
uint32_t dscr = 0;
/* MRC(...) to read coprocessor register into r0 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2),
&dscr);
/* Move R0 to DTRTX */
cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
&dscr);
/* Read DCCTX */
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DTRTX, value);
return retval;
}
static int cortex_a8_write_cp(struct target *target, uint32_t value,
uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
{
int retval;
uint32_t dscr;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
/* Check that DCCRX is not full */
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (dscr & (1 << DSCR_DTR_RX_FULL))
{
LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
/* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
}
/* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
retval = mem_ap_write_u32(swjdp,
armv7a->debug_base + CPUDBG_DTRRX, value);
/* Move DTRRX to r0 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
/* MCR(...) to write r0 to coprocessor */
return cortex_a8_exec_opcode(target,
ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2),
&dscr);
}
static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm, uint32_t *value)
{
return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
}
static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm, uint32_t value)
{
return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
}
static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
{
if (cpnum!=15)
{
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
}
static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
{
if (cpnum!=15)
{
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
}
static int cortex_a8_dap_read_coreregister_u32(struct target *target,
uint32_t *value, int regnum)
{
int retval = ERROR_OK;
uint8_t reg = regnum&0xFF;
uint32_t dscr = 0;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
if (reg > 17)
return retval;
if (reg < 15)
{
/* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
cortex_a8_exec_opcode(target,
ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
&dscr);
}
else if (reg == 15)
{
/* "MOV r0, r15"; then move r0 to DCCTX */
cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
cortex_a8_exec_opcode(target,
ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
&dscr);
}
else
{
/* "MRS r0, CPSR" or "MRS r0, SPSR"
* then move r0 to DCCTX
*/
cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
cortex_a8_exec_opcode(target,
ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
&dscr);
}
/* Wait for DTRRXfull then read DTRRTX */
while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0)
{
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
}
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DTRTX, value);
LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
return retval;
}
static int cortex_a8_dap_write_coreregister_u32(struct target *target,
uint32_t value, int regnum)
{
int retval = ERROR_OK;
uint8_t Rd = regnum&0xFF;
uint32_t dscr;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
/* Check that DCCRX is not full */
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (dscr & (1 << DSCR_DTR_RX_FULL))
{
LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
/* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
}
if (Rd > 17)
return retval;
/* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
LOG_DEBUG("write DCC 0x%08" PRIx32, value);
retval = mem_ap_write_u32(swjdp,
armv7a->debug_base + CPUDBG_DTRRX, value);
if (Rd < 15)
{
/* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
&dscr);
}
else if (Rd == 15)
{
/* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
* then "mov r15, r0"
*/
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
}
else
{
/* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
* then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
*/
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
&dscr);
/* "Prefetch flush" after modifying execution status in CPSR */
if (Rd == 16)
cortex_a8_exec_opcode(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
&dscr);
}
return retval;
}
/* Write to memory mapped registers directly with no cache or mmu handling */
static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
{
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
retval = mem_ap_write_atomic_u32(swjdp, address, value);
return retval;
}
/*
* Cortex-A8 implementation of Debug Programmer's Model
*
* NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
* so there's no need to poll for it before executing an instruction.
*
* NOTE that in several of these cases the "stall" mode might be useful.
* It'd let us queue a few operations together... prepare/finish might
* be the places to enable/disable that mode.
*/
static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
{
return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
}
static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
{
LOG_DEBUG("write DCC 0x%08" PRIx32, data);
return mem_ap_write_u32(&a8->armv7a_common.swjdp_info,
a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
}
static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
uint32_t *dscr_p)
{
struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
uint32_t dscr = 1 << DSCR_INSTR_COMP;
int retval;
if (dscr_p)
dscr = *dscr_p;
/* Wait for DTRRXfull */
while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0) {
retval = mem_ap_read_atomic_u32(swjdp,
a8->armv7a_common.debug_base + CPUDBG_DSCR,
&dscr);
}
retval = mem_ap_read_atomic_u32(swjdp,
a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
if (dscr_p)
*dscr_p = dscr;
return retval;
}
static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
{
struct cortex_a8_common *a8 = dpm_to_a8(dpm);
struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
uint32_t dscr;
int retval;
/* set up invariant: INSTR_COMP is set after ever DPM operation */
do {
retval = mem_ap_read_atomic_u32(swjdp,
a8->armv7a_common.debug_base + CPUDBG_DSCR,
&dscr);
} while ((dscr & (1 << DSCR_INSTR_COMP)) == 0);
/* this "should never happen" ... */
if (dscr & (1 << DSCR_DTR_RX_FULL)) {
LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
/* Clear DCCRX */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
}
return retval;
}
static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
{
/* REVISIT what could be done here? */
return ERROR_OK;
}
static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
uint32_t opcode, uint32_t data)
{
struct cortex_a8_common *a8 = dpm_to_a8(dpm);
int retval;
uint32_t dscr = 1 << DSCR_INSTR_COMP;
retval = cortex_a8_write_dcc(a8, data);
return cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
opcode,
&dscr);
}
static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
uint32_t opcode, uint32_t data)
{
struct cortex_a8_common *a8 = dpm_to_a8(dpm);
uint32_t dscr = 1 << DSCR_INSTR_COMP;
int retval;
retval = cortex_a8_write_dcc(a8, data);
/* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
/* then the opcode, taking data from R0 */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
opcode,
&dscr);
return retval;
}
static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
{
struct target *target = dpm->arm->target;
uint32_t dscr = 1 << DSCR_INSTR_COMP;
/* "Prefetch flush" after modifying execution status in CPSR */
return cortex_a8_exec_opcode(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
&dscr);
}
static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
uint32_t opcode, uint32_t *data)
{
struct cortex_a8_common *a8 = dpm_to_a8(dpm);
int retval;
uint32_t dscr = 1 << DSCR_INSTR_COMP;
/* the opcode, writing data to DCC */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
opcode,
&dscr);
return cortex_a8_read_dcc(a8, data, &dscr);
}
static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
uint32_t opcode, uint32_t *data)
{
struct cortex_a8_common *a8 = dpm_to_a8(dpm);
uint32_t dscr = 1 << DSCR_INSTR_COMP;
int retval;
/* the opcode, writing data to R0 */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
opcode,
&dscr);
/* write R0 to DCC */
retval = cortex_a8_exec_opcode(
a8->armv7a_common.armv4_5_common.target,
ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
&dscr);
return cortex_a8_read_dcc(a8, data, &dscr);
}
static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
{
struct arm_dpm *dpm = &a8->armv7a_common.dpm;
dpm->arm = &a8->armv7a_common.armv4_5_common;
dpm->didr = didr;
dpm->prepare = cortex_a8_dpm_prepare;
dpm->finish = cortex_a8_dpm_finish;
dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
return arm_dpm_setup(dpm);
}
/*
* Cortex-A8 Run control
*/
static int cortex_a8_poll(struct target *target)
{
int retval = ERROR_OK;
uint32_t dscr;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct swjdp_common *swjdp = &armv7a->swjdp_info;
enum target_state prev_target_state = target->state;
uint8_t saved_apsel = dap_ap_get_select(swjdp);
dap_ap_select(swjdp, swjdp_debugap);
retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
{
dap_ap_select(swjdp, saved_apsel);
return retval;
}
cortex_a8->cpudbg_dscr = dscr;
if ((dscr & 0x3) == 0x3)
{
if (prev_target_state != TARGET_HALTED)
{
/* We have a halting debug event */
LOG_DEBUG("Target halted");
target->state = TARGET_HALTED;
if ((prev_target_state == TARGET_RUNNING)
|| (prev_target_state == TARGET_RESET))
{
retval = cortex_a8_debug_entry(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target,
TARGET_EVENT_HALTED);
}
if (prev_target_state == TARGET_DEBUG_RUNNING)
{
LOG_DEBUG(" ");
retval = cortex_a8_debug_entry(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target,
TARGET_EVENT_DEBUG_HALTED);
}
}
}
else if ((dscr & 0x3) == 0x2)
{
target->state = TARGET_RUNNING;
}
else
{
LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
target->state = TARGET_UNKNOWN;
}
dap_ap_select(swjdp, saved_apsel);
return retval;
}
static int cortex_a8_halt(struct target *target)
{
int retval = ERROR_OK;
uint32_t dscr;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
uint8_t saved_apsel = dap_ap_get_select(swjdp);
dap_ap_select(swjdp, swjdp_debugap);
/*
* Tell the core to be halted by writing DRCR with 0x1
* and then wait for the core to be halted.
*/
retval = mem_ap_write_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DRCR, 0x1);
/*
* enter halting debug mode
*/
mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
retval = mem_ap_write_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
if (retval != ERROR_OK)
goto out;
do {
mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
} while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
target->debug_reason = DBG_REASON_DBGRQ;
out:
dap_ap_select(swjdp, saved_apsel);
return retval;
}
static int cortex_a8_resume(struct target *target, int current,
uint32_t address, int handle_breakpoints, int debug_execution)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *armv4_5 = &armv7a->armv4_5_common;
struct swjdp_common *swjdp = &armv7a->swjdp_info;
// struct breakpoint *breakpoint = NULL;
uint32_t resume_pc, dscr;
uint8_t saved_apsel = dap_ap_get_select(swjdp);
dap_ap_select(swjdp, swjdp_debugap);
if (!debug_execution)
{
target_free_all_working_areas(target);
// cortex_m3_enable_breakpoints(target);
// cortex_m3_enable_watchpoints(target);
}
#if 0
if (debug_execution)
{
/* Disable interrupts */
/* We disable interrupts in the PRIMASK register instead of
* masking with C_MASKINTS,
* This is probably the same issue as Cortex-M3 Errata 377493:
* C_MASKINTS in parallel with disabled interrupts can cause
* local faults to not be taken. */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
/* Make sure we are in Thumb mode */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
}
#endif
/* current = 1: continue on current pc, otherwise continue at <address> */
resume_pc = buf_get_u32(
armv4_5->core_cache->reg_list[15].value,
0, 32);
if (!current)
resume_pc = address;
/* Make sure that the Armv7 gdb thumb fixups does not
* kill the return address
*/
switch (armv4_5->core_state)
{
case ARMV4_5_STATE_ARM:
resume_pc &= 0xFFFFFFFC;
break;
case ARMV4_5_STATE_THUMB:
case ARM_STATE_THUMB_EE:
/* When the return address is loaded into PC
* bit 0 must be 1 to stay in Thumb state
*/
resume_pc |= 0x1;
break;
case ARMV4_5_STATE_JAZELLE:
LOG_ERROR("How do I resume into Jazelle state??");
return ERROR_FAIL;
}
LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
buf_set_u32(armv4_5->core_cache->reg_list[15].value,
0, 32, resume_pc);
armv4_5->core_cache->reg_list[15].dirty = 1;
armv4_5->core_cache->reg_list[15].valid = 1;
cortex_a8_restore_context(target);
#if 0
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints)
{
/* Single step past breakpoint at current address */
if ((breakpoint = breakpoint_find(target, resume_pc)))
{
LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
cortex_m3_unset_breakpoint(target, breakpoint);
cortex_m3_single_step_core(target);
cortex_m3_set_breakpoint(target, breakpoint);
}
}
#endif
/* Restart core and wait for it to be started */
mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
do {
mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
} while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
/* registers are now invalid */
register_cache_invalidate(armv4_5->core_cache);
if (!debug_execution)
{
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
}
else
{
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
}
dap_ap_select(swjdp, saved_apsel);
return ERROR_OK;
}
static int cortex_a8_debug_entry(struct target *target)
{
int i;
uint32_t regfile[16], pc, cpsr, dscr;
int retval = ERROR_OK;
struct working_area *regfile_working_area = NULL;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *armv4_5 = &armv7a->armv4_5_common;
struct swjdp_common *swjdp = &armv7a->swjdp_info;
struct reg *reg;
LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
/* Enable the ITR execution once we are in debug mode */
mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
/* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
* imprecise data aborts get discarded by issuing a Data
* Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
*/
dscr |= (1 << DSCR_EXT_INT_EN);
retval = mem_ap_write_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DSCR, dscr);
/* Examine debug reason */
switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
{
case 0: /* DRCR[0] write */
case 4: /* EDBGRQ */
target->debug_reason = DBG_REASON_DBGRQ;
break;
case 1: /* HW breakpoint */
case 3: /* SW BKPT */
case 5: /* vector catch */
target->debug_reason = DBG_REASON_BREAKPOINT;
break;
case 10: /* precise watchpoint */
target->debug_reason = DBG_REASON_WATCHPOINT;
/* REVISIT could collect WFAR later, to see just
* which instruction triggered the watchpoint.
*/
break;
default:
target->debug_reason = DBG_REASON_UNDEFINED;
break;
}
/* REVISIT fast_reg_read is never set ... */
/* Examine target state and mode */
if (cortex_a8->fast_reg_read)
target_alloc_working_area(target, 64, &regfile_working_area);
/* First load register acessible through core debug port*/
if (!regfile_working_area)
{
retval = arm_dpm_read_current_registers(&armv7a->dpm);
}
else
{
dap_ap_select(swjdp, swjdp_memoryap);
cortex_a8_read_regs_through_mem(target,
regfile_working_area->address, regfile);
dap_ap_select(swjdp, swjdp_memoryap);
target_free_working_area(target, regfile_working_area);
/* read Current PSR */
cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
pc = regfile[15];
dap_ap_select(swjdp, swjdp_debugap);
LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
arm_set_cpsr(armv4_5, cpsr);
/* update cache */
for (i = 0; i <= ARM_PC; i++)
{
reg = arm_reg_current(armv4_5, i);
buf_set_u32(reg->value, 0, 32, regfile[i]);
reg->valid = 1;
reg->dirty = 0;
}
/* Fixup PC Resume Address */
if (cpsr & (1 << 5))
{
// T bit set for Thumb or ThumbEE state
regfile[ARM_PC] -= 4;
}
else
{
// ARM state
regfile[ARM_PC] -= 8;
}
reg = armv4_5->core_cache->reg_list + 15;
buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
reg->dirty = reg->valid;
}
#if 0
/* TODO, Move this */
uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
#endif
/* Are we in an exception handler */
// armv4_5->exception_number = 0;
if (armv7a->post_debug_entry)
armv7a->post_debug_entry(target);
return retval;
}
static void cortex_a8_post_debug_entry(struct target *target)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
// cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
/* examine cp15 control reg */
armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
jtag_execute_queue();
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
{
uint32_t cache_type_reg;
/* identify caches */
armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
jtag_execute_queue();
/* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
armv4_5_identify_cache(cache_type_reg,
&armv7a->armv4_5_mmu.armv4_5_cache);
}
armv7a->armv4_5_mmu.mmu_enabled =
(cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
(cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
(cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
}
static int cortex_a8_step(struct target *target, int current, uint32_t address,
int handle_breakpoints)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *armv4_5 = &armv7a->armv4_5_common;
struct breakpoint *breakpoint = NULL;
struct breakpoint stepbreakpoint;
struct reg *r;
int timeout = 100;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
r = armv4_5->core_cache->reg_list + 15;
if (!current)
{
buf_set_u32(r->value, 0, 32, address);
}
else
{
address = buf_get_u32(r->value, 0, 32);
}
/* The front-end may request us not to handle breakpoints.
* But since Cortex-A8 uses breakpoint for single step,
* we MUST handle breakpoints.
*/
handle_breakpoints = 1;
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, address);
if (breakpoint)
cortex_a8_unset_breakpoint(target, breakpoint);
}
/* Setup single step breakpoint */
stepbreakpoint.address = address;
stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
? 2 : 4;
stepbreakpoint.type = BKPT_HARD;
stepbreakpoint.set = 0;
/* Break on IVA mismatch */
cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
target->debug_reason = DBG_REASON_SINGLESTEP;
cortex_a8_resume(target, 1, address, 0, 0);
while (target->state != TARGET_HALTED)
{
cortex_a8_poll(target);
if (--timeout == 0)
{
LOG_WARNING("timeout waiting for target halt");
break;
}
}
cortex_a8_unset_breakpoint(target, &stepbreakpoint);
if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
if (breakpoint)
cortex_a8_set_breakpoint(target, breakpoint, 0);
if (target->state != TARGET_HALTED)
LOG_DEBUG("target stepped");
return ERROR_OK;
}
static int cortex_a8_restore_context(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
LOG_DEBUG(" ");
if (armv7a->pre_restore_context)
armv7a->pre_restore_context(target);
arm_dpm_write_dirty_registers(&armv7a->dpm);
if (armv7a->post_restore_context)
armv7a->post_restore_context(target);
return ERROR_OK;
}
/*
* Cortex-A8 Breakpoint and watchpoint fuctions
*/
/* Setup hardware Breakpoint Register Pair */
static int cortex_a8_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval;
int brp_i=0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
if (breakpoint->set)
{
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD)
{
while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
brp_i++ ;
if (brp_i >= cortex_a8->brp_num)
{
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint->set = brp_i + 1;
if (breakpoint->length == 2)
{
byte_addr_select = (3 << (breakpoint->address & 0x02));
}
control = ((matchmode & 0x7) << 20)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = 1;
brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
brp_list[brp_i].control = control;
cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
brp_list[brp_i].value);
cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
}
else if (breakpoint->type == BKPT_SOFT)
{
uint8_t code[4];
if (breakpoint->length == 2)
{
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
}
else
{
buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
}
retval = target->type->read_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
retval = target->type->write_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1, code);
if (retval != ERROR_OK)
return retval;
breakpoint->set = 0x11; /* Any nice value but 0 */
}
return ERROR_OK;
}
static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
if (!breakpoint->set)
{
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD)
{
int brp_i = breakpoint->set - 1;
if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
{
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = 0;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
brp_list[brp_i].value);
}
else
{
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4)
{
retval = target->type->write_memory(target,
breakpoint->address & 0xFFFFFFFE,
4, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
else
{
retval = target->type->write_memory(target,
breakpoint->address & 0xFFFFFFFE,
2, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
}
breakpoint->set = 0;
return ERROR_OK;
}
static int cortex_a8_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
{
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
cortex_a8->brp_num_available--;
cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
return ERROR_OK;
}
static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
#if 0
/* It is perfectly possible to remove brakpoints while the taget is running */
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
#endif
if (breakpoint->set)
{
cortex_a8_unset_breakpoint(target, breakpoint);
if (breakpoint->type == BKPT_HARD)
cortex_a8->brp_num_available++ ;
}
return ERROR_OK;
}
/*
* Cortex-A8 Reset fuctions
*/
static int cortex_a8_assert_reset(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
LOG_DEBUG(" ");
/* registers are now invalid */
register_cache_invalidate(armv7a->armv4_5_common.core_cache);
target->state = TARGET_RESET;
return ERROR_OK;
}
static int cortex_a8_deassert_reset(struct target *target)
{
LOG_DEBUG(" ");
if (target->reset_halt)
{
int retval;
if ((retval = target_halt(target)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/*
* Cortex-A8 Memory access
*
* This is same Cortex M3 but we must also use the correct
* ap number for every access.
*/
static int cortex_a8_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
int retval = ERROR_INVALID_ARGUMENTS;
/* cortex_a8 handles unaligned memory access */
// ??? dap_ap_select(swjdp, swjdp_memoryap);
if (count && buffer) {
switch (size) {
case 4:
retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
break;
case 2:
retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
break;
case 1:
retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
break;
}
}
return retval;
}
static int cortex_a8_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
int retval = ERROR_INVALID_ARGUMENTS;
// ??? dap_ap_select(swjdp, swjdp_memoryap);
if (count && buffer) {
switch (size) {
case 4:
retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
break;
case 2:
retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
break;
case 1:
retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
break;
}
}
if (retval == ERROR_OK && target->state == TARGET_HALTED)
{
/* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
/* invalidate I-Cache */
if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
{
/* Invalidate ICache single entry with MVA, repeat this for all cache
lines in the address range, Cortex-A8 has fixed 64 byte line length */
/* Invalidate Cache single entry with MVA to PoU */
for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
}
/* invalidate D-Cache */
if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
{
/* Invalidate Cache single entry with MVA to PoC */
for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
}
}
return retval;
}
static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
uint32_t count, uint8_t *buffer)
{
return cortex_a8_write_memory(target, address, 4, count, buffer);
}
static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
{
#if 0
u16 dcrdr;
mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
*ctrl = (uint8_t)dcrdr;
*value = (uint8_t)(dcrdr >> 8);
LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
/* write ack back to software dcc register
* signify we have read data */
if (dcrdr & (1 << 0))
{
dcrdr = 0;
mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
}
#endif
return ERROR_OK;
}
static int cortex_a8_handle_target_request(void *priv)
{
struct target *target = priv;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct swjdp_common *swjdp = &armv7a->swjdp_info;
if (!target_was_examined(target))
return ERROR_OK;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING)
{
uint8_t data = 0;
uint8_t ctrl = 0;
cortex_a8_dcc_read(swjdp, &data, &ctrl);
/* check if we have data */
if (ctrl & (1 << 0))
{
uint32_t request;
/* we assume target is quick enough */
request = data;
cortex_a8_dcc_read(swjdp, &data, &ctrl);
request |= (data << 8);
cortex_a8_dcc_read(swjdp, &data, &ctrl);
request |= (data << 16);
cortex_a8_dcc_read(swjdp, &data, &ctrl);
request |= (data << 24);
target_request(target, request);
}
}
return ERROR_OK;
}
/*
* Cortex-A8 target information and configuration
*/
static int cortex_a8_examine_first(struct target *target)
{
struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct swjdp_common *swjdp = &armv7a->swjdp_info;
int i;
int retval = ERROR_OK;
uint32_t didr, ctypr, ttypr, cpuid;
LOG_DEBUG("TODO");
/* Here we shall insert a proper ROM Table scan */
armv7a->debug_base = OMAP3530_DEBUG_BASE;
/* We do one extra read to ensure DAP is configured,
* we call ahbap_debugport_init(swjdp) instead
*/
ahbap_debugport_init(swjdp);
mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
if ((retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
{
LOG_DEBUG("Examine failed");
return retval;
}
if ((retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
{
LOG_DEBUG("Examine failed");
return retval;
}
if ((retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
{
LOG_DEBUG("Examine failed");
return retval;
}
if ((retval = mem_ap_read_atomic_u32(swjdp,
armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
{
LOG_DEBUG("Examine failed");
return retval;
}
LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
LOG_DEBUG("didr = 0x%08" PRIx32, didr);
cortex_a8_dpm_setup(cortex_a8, didr);
/* Setup Breakpoint Register Pairs */
cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
cortex_a8->brp_num_available = cortex_a8->brp_num;
cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
// cortex_a8->brb_enabled = ????;
for (i = 0; i < cortex_a8->brp_num; i++)
{
cortex_a8->brp_list[i].used = 0;
if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
cortex_a8->brp_list[i].type = BRP_NORMAL;
else
cortex_a8->brp_list[i].type = BRP_CONTEXT;
cortex_a8->brp_list[i].value = 0;
cortex_a8->brp_list[i].control = 0;
cortex_a8->brp_list[i].BRPn = i;
}
/* Setup Watchpoint Register Pairs */
cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
cortex_a8->wrp_num_available = cortex_a8->wrp_num;
cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
for (i = 0; i < cortex_a8->wrp_num; i++)
{
cortex_a8->wrp_list[i].used = 0;
cortex_a8->wrp_list[i].type = 0;
cortex_a8->wrp_list[i].value = 0;
cortex_a8->wrp_list[i].control = 0;
cortex_a8->wrp_list[i].WRPn = i;
}
LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
cortex_a8->brp_num , cortex_a8->wrp_num);
target_set_examined(target);
return ERROR_OK;
}
static int cortex_a8_examine(struct target *target)
{
int retval = ERROR_OK;
/* don't re-probe hardware after each reset */
if (!target_was_examined(target))
retval = cortex_a8_examine_first(target);
/* Configure core debug access */
if (retval == ERROR_OK)
retval = cortex_a8_init_debug_access(target);
return retval;
}
/*
* Cortex-A8 target creation and initialization
*/
static int cortex_a8_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* examine_first() does a bunch of this */
return ERROR_OK;
}
static int cortex_a8_init_arch_info(struct target *target,
struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
{
struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
struct arm *armv4_5 = &armv7a->armv4_5_common;
struct swjdp_common *swjdp = &armv7a->swjdp_info;
/* Setup struct cortex_a8_common */
cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
armv4_5->arch_info = armv7a;
/* prepare JTAG information for the new target */
cortex_a8->jtag_info.tap = tap;
cortex_a8->jtag_info.scann_size = 4;
swjdp->dp_select_value = -1;
swjdp->ap_csw_value = -1;
swjdp->ap_tar_value = -1;
swjdp->jtag_info = &cortex_a8->jtag_info;
swjdp->memaccess_tck = 80;
/* Number of bits for tar autoincrement, impl. dep. at least 10 */
swjdp->tar_autoincr_block = (1 << 10);
cortex_a8->fast_reg_read = 0;
/* register arch-specific functions */
armv7a->examine_debug_reason = NULL;
armv7a->post_debug_entry = cortex_a8_post_debug_entry;
armv7a->pre_restore_context = NULL;
armv7a->post_restore_context = NULL;
armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
// armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
// armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
// armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
armv7a->armv4_5_mmu.has_tiny_pages = 1;
armv7a->armv4_5_mmu.mmu_enabled = 0;
armv7a->read_cp15 = cortex_a8_read_cp15;
armv7a->write_cp15 = cortex_a8_write_cp15;
// arm7_9->handle_target_request = cortex_a8_handle_target_request;
/* REVISIT v7a setup should be in a v7a-specific routine */
armv4_5_init_arch_info(target, armv4_5);
armv7a->common_magic = ARMV7_COMMON_MAGIC;
target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
return ERROR_OK;
}
static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
{
struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
cortex_a8_init_arch_info(target, cortex_a8, target->tap);
return ERROR_OK;
}
COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv7a_common *armv7a = target_to_armv7a(target);
return armv4_5_handle_cache_info_command(CMD_CTX,
&armv7a->armv4_5_mmu.armv4_5_cache);
}
COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
{
struct target *target = get_current_target(CMD_CTX);
cortex_a8_init_debug_access(target);
return ERROR_OK;
}
static int cortex_a8_register_commands(struct command_context *cmd_ctx)
{
struct command *cortex_a8_cmd;
int retval = ERROR_OK;
armv4_5_register_commands(cmd_ctx);
armv7a_register_commands(cmd_ctx);
cortex_a8_cmd = COMMAND_REGISTER(cmd_ctx, NULL, "cortex_a8",
NULL, COMMAND_ANY,
"cortex_a8 specific commands");
COMMAND_REGISTER(cmd_ctx, cortex_a8_cmd, "cache_info",
cortex_a8_handle_cache_info_command, COMMAND_EXEC,
"display information about target caches");
COMMAND_REGISTER(cmd_ctx, cortex_a8_cmd, "dbginit",
cortex_a8_handle_dbginit_command, COMMAND_EXEC,
"Initialize core debug");
return retval;
}
struct target_type cortexa8_target = {
.name = "cortex_a8",
.poll = cortex_a8_poll,
.arch_state = armv7a_arch_state,
.target_request_data = NULL,
.halt = cortex_a8_halt,
.resume = cortex_a8_resume,
.step = cortex_a8_step,
.assert_reset = cortex_a8_assert_reset,
.deassert_reset = cortex_a8_deassert_reset,
.soft_reset_halt = NULL,
.get_gdb_reg_list = armv4_5_get_gdb_reg_list,
.read_memory = cortex_a8_read_memory,
.write_memory = cortex_a8_write_memory,
.bulk_write_memory = cortex_a8_bulk_write_memory,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = cortex_a8_add_breakpoint,
.remove_breakpoint = cortex_a8_remove_breakpoint,
.add_watchpoint = NULL,
.remove_watchpoint = NULL,
.register_commands = cortex_a8_register_commands,
.target_create = cortex_a8_target_create,
.init_target = cortex_a8_init_target,
.examine = cortex_a8_examine,
.mrc = cortex_a8_mrc,
.mcr = cortex_a8_mcr,
};